๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

signed distance functions1

[Paper Review] DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation Abstract1. DeepSDF๋ž€?- ํ•™์Šต ๊ธฐ๋ฐ˜์˜ ์—ฐ์†์  Signed Distance Function (SDF) ํ‘œํ˜„- ํ˜•์ƒ ํด๋ž˜์Šค ์ „์ฒด๋ฅผ ๊ณ ํ’ˆ์งˆ๋กœ ํ‘œํ˜„, ๋ณด๊ฐ„(interpolation), ๋ถˆ์™„์ „ ๋ฐ์ดํ„ฐ ๋ณต์› ๊ฐ€๋Šฅ2. ํ‘œํ˜„ ๋ฐฉ์‹- ๋ถ€ํ”ผ ํ•„๋“œ์—์„œ ์ ์˜ ํฌ๊ธฐ: ํ‘œ๋ฉด ๊ฒฝ๊ณ„๊นŒ์ง€์˜ ๊ฑฐ๋ฆฌ- ๋ถ€ํ˜ธ: ํ˜•์ƒ ๋‚ด๋ถ€(-) ๋˜๋Š” ์™ธ๋ถ€(+)- ๊ฒฝ๊ณ„๋Š” ํ•จ์ˆ˜์˜ 0-level-set ์œผ๋กœ ์•”๋ฌต์ ์œผ๋กœ ์ธ์ฝ”๋”ฉ3. ๊ธฐ์กด SDF ์™€ ์ฐจ์ด์ - ๊ธฐ์กด SDF ๋Š” ๋‹จ์ผ ํ˜•์ƒ ํ‘œํ˜„- DeepSDF ๋Š” ํ˜•์ƒ ํด๋ž˜์Šค ์ „์ฒด๋ฅผ ํ•™์Šตํ•˜๊ณ  ํ‘œํ˜„ ๊ฐ€๋Šฅ4. ์„ฑ๊ณผ- 3D ํ˜•์ƒ ํ‘œํ˜„๊ณผ ๋ณต์›์—์„œ ์ตœ์ฒจ๋‹จ ์„ฑ๋Šฅ- ๋ชจ๋ธ ํฌ๊ธฐ๋ฅผ ๊ธฐ์กด ๋Œ€๋น„ 10๋ฐฐ ๊ฐ์†Œ Introduction1. ๋ฌธ์ œ ์ •์˜: 3D ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์€ ๊ธฐ์กด ๋ฐฉ์‹์—์„œ ๊ณต๊ฐ„ ๋ฐ ์‹œ๊ฐ„ ๋ณต์žก๋„ ์ฆ๊ฐ€, ์ •์ (vertex) .. 2024. 12. 9.