๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

๐Ÿ˜ŽAI/3D Reconstruction16

[Paper Review] SyncDreamer: Generating Multiview-Consistent Images From a Single-View Image https://arxiv.org/abs/2309.03453 SyncDreamer: Generating Multiview-consistent Images from a Single-view ImageIn this paper, we present a novel diffusion model called that generates multiview-consistent images from a single-view image. Using pretrained large-scale 2D diffusion models, recent work Zero123 demonstrates the ability to generate plausible novel views farxiv.org   Abstract์ด ๋…ผ๋ฌธ์—์„œ๋Š” SyncD.. 2025. 3. 18.
[Paper Review] Wonder3D: Single Image to 3D Using Cross-Domain Diffusion https://arxiv.org/abs/2310.15008 Wonder3D: Single Image to 3D using Cross-Domain DiffusionIn this work, we introduce Wonder3D, a novel method for efficiently generating high-fidelity textured meshes from single-view images.Recent methods based on Score Distillation Sampling (SDS) have shown the potential to recover 3D geometry from 2D diffusionarxiv.org ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•˜๋Š” Wonder3D ๋Š” ๋‹ค์ค‘ ์‹œ์  ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฒ•์„  .. 2025. 3. 13.
[Paper Review] ThemeStation: Generating Theme-Aware 3D assets from Few Exemplars https://arxiv.org/abs/2403.15383 ThemeStation: Generating Theme-Aware 3D Assets from Few ExemplarsReal-world applications often require a large gallery of 3D assets that share a consistent theme. While remarkable advances have been made in general 3D content creation from text or image, synthesizing customized 3D assets following the shared theme of inarxiv.org   ๋ฌธ์ œ ์ •์˜ ๊ฐ€์ƒํ˜„์‹ค(VR)์ด๋‚˜ ๋น„๋””์˜ค ๊ฒŒ์ž„์—์„œ๋Š” ํ…Œ๋งˆ์ ์œผ๋กœ.. 2025. 3. 11.
[Notable] 3DGS(3D gaussian splatting) ์€ Differentiable ํ•œ๊ฐ€? โ–ถ3DGS ๋Š” Explicit Representation (๋ช…์‹œ์  ํ‘œํ˜„) ๋ฐฉ์‹์ด์ง€๋งŒ, ๋ Œ๋”๋ง ๊ณผ์ •์ด ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ์„ค๊ณ„๋˜์–ด ์žˆ์–ด์„œ ํ•™์Šตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. โœ… Explicit Representation์ธ๋ฐ ์™œ Differentiable ํ• ๊นŒ?๋ณดํ†ต Explicit Representation(๋ช…์‹œ์  ํ‘œํ˜„)์€ 3D ๊ฐ์ฒด๋ฅผ ์ง์ ‘์ ์œผ๋กœ ๋‚˜ํƒ€๋‚ด๋Š” ๋ฐฉ์‹์ด๊ธฐ ๋•Œ๋ฌธ์—, ๋ฏธ๋ถ„์ด ์–ด๋ ต๋‹ค๊ณ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.์˜ˆ๋ฅผ ๋“ค์–ด:Point Cloud (์  ํด๋ผ์šฐ๋“œ) โ†’ ๋‹จ์ˆœํ•œ 3D ์ขŒํ‘œ ์ง‘ํ•ฉ์ด๋ฏ€๋กœ ๋ฏธ๋ถ„์ด ์–ด๋ ค์›€.Mesh (๋ฉ”์‰ฌ, ์‚ผ๊ฐํ˜• ๊ธฐ๋ฐ˜ ๋ชจ๋ธ) โ†’ ๋ฒ„ํ…์Šค(Vertex)์™€ ํŽ˜์ด์Šค(Face)๋กœ ํ‘œํ˜„๋˜๋ฉฐ, ์ผ๋ฐ˜์ ์ธ ๊ฒฝ์šฐ ๋ฏธ๋ถ„์ด ์‰ฝ์ง€ ์•Š์Œ.ํ•˜์ง€๋งŒ 3DGS๋Š” Gaussian Splatting์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ(differentiable)ํ•œ.. 2025. 2. 17.
[Paper Review] Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with Transformers https://arxiv.org/abs/2312.09147 Triplane Meets Gaussian Splatting: Fast and Generalizable Single-View 3D Reconstruction with TransformersRecent advancements in 3D reconstruction from single images have been driven by the evolution of generative models. Prominent among these are methods based on Score Distillation Sampling (SDS) and the adaptation of diffusion models in the 3D domain. Despitarxi.. 2025. 2. 17.
[Paper Review][Workflow Review] DreamFusion: Text-to-3D Using 2D Diffusion DreamFusion ์€ Text input์— 3D output์„ ๊ฒฐ๊ณผ๋กœ ํ•˜๋Š” ๋…ผ๋ฌธ์ž…๋‹ˆ๋‹ค.https://dreamfusion3d.github.io/ DreamFusion: Text-to-3D using 2D DiffusionDreamFusion: Text-to-3D using 2D Diffusion, 2022.dreamfusion3d.github.io  ์ •๋ง ๊ฐ„๋‹จํ•˜๊ฒŒ ์ •๋ฆฌ๋ฅผ ํ•˜์ž๋ฉด,NeRF ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋žœ๋คํ•œ 3D ๋ฌผ์ฒด๋ฅผ ๋ Œ๋”ํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋ฆฌ๊ณ  text ๋ฐ์ดํ„ฐ๋ฅผ input์œผ๋กœ ๋„ฃ์œผ๋ฉด Stable Diffusion ์„ ์ด์šฉํ•˜์—ฌ 2D image ๋ฅผ generate ํ•ฉ๋‹ˆ๋‹ค.generated ๋œ ์ด๋ฏธ์ง€์™€ NeRF ์—์„œ ๋ Œ๋”๋œ 3D ์ด๋ฏธ์ง€์˜ 2D, ๊ทธ๋ฆฌ๊ณ  text prompt ๋ฅผ SDS (Score Distillati.. 2025. 1. 23.