๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

๐Ÿ˜ŽAI41

[Blender4.4][Window] ๋ธ”๋ Œ๋” ์นด๋ฉ”๋ผ ์„ค์น˜ํ•ด์„œ ์• ๋‹ˆ๋ฉ”์ด์…˜ ๋ Œ๋”๋ง ํ•˜๊ธฐ (RGB Video) ์ผ๋‹จ ์ €๋Š” Mixamo ๋ฐ์ดํ„ฐ๋ฅผ ์จ์„œ ์บ๋ฆญํ„ฐ ์• ๋‹ˆ๋ฉ”์ด์…˜์„ ๋ Œ๋”๋งํ•ด์„œ video ๋กœ ์ถœ๋ ฅํ•ด๋ณด๋„๋ก ํ•˜๊ฒ ์Šต๋‹ˆ๋‹ค.์ผ๋‹จ Mixamo ์—์„œ ์›ํ•˜๋Š” ์• ๋‹ˆ๋ฉ”์ด์…˜ fbx ํŒŒ์ผ์„ ๋‹ค์šด๋ฐ›๊ณ  ๋ธ”๋ Œ๋”์— import ํ•ด์ค๋‹ˆ๋‹ค. ๊ทธ๋Ÿผ ์ด์ œ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๊ฐ์ฒด๊ฐ€ ๋‚˜์˜ฌ๊ฒƒ...์นด๋ฉ”๋ผ๋Š” Shift + A ๋ˆŒ๋Ÿฌ์„œ Camera ํด๋ฆญํ•˜๋ฉด ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ์Œ๊ทธ๋ฆฌ๊ณ  ์นด๋ฉ”๋ผ๋“  ๊ฐ์ฒด๋“ค ํด๋ฆญ์„ ํ•˜๊ณ  N ์„ ๋ˆ„๋ฅด๋ฉด ์˜ค๋ฅธ์ชฝ ์œ„์— location ์ด๋ž‘ Rotation ๋‚˜์˜ค๊ฑฐ๋“ ์š”?๊ทธ๊ฑฐ ์ˆซ์ž๋“ค ์กฐ์ ˆํ•ด์„œ ๊ฐ์ฒด ์œ„์น˜๋‚˜ ์นด๋ฉ”๋ผ ๋ทฐ ์œ„์น˜๋‚˜ ์กฐ์ ˆํ•˜๋ฉด ๋ฉ๋‹ˆ๋‹ค.์•„๋‹ˆ๋ฉด layout ์ฐฝ์—์„œ ์›€์ง์ด๊ณ  ์‹ถ์€ ๋ฌผ์ฒด ์„ ํƒํ•ด์„œ G + x/y/z ์…‹์ค‘ ์–ด๋””๋กœ ์›€์ง์ด๊ณ  ์‹ถ์€์ง€ ํด๋ฆญํ•ด์„œ ํ•ด๋‹น ์ถ•์œผ๋กœ๋งŒ ์›€์ง์ผ ์ˆ˜ ๋„ ์žˆ์Œ (ex. x ์ถ• ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐ์ฒด๋ฅผ ์›€์ง์ด๊ณ  ์‹ถ์œผ๋ฉด G + x ํ•˜๊ณ  ๋งˆ์šฐ์Šค๋กœ ์›€.. 2025. 4. 14.
[Blender4.4][Window] Depth Map ์ถ”์ถœํ•˜๊ธฐ ํ•˜ ์ง„์งœ ๋ธ”๋ Œ๋” ๋„ˆ๋ฌด ์–ด๋ ต๊ณ  ๋ณต์žกํ•˜๊ณ  ์ •์‹  ๋‚˜๊ฐ€๊ณ  ๋“ฑ๋“ฑ์ œ๊ฐ€ ๋ณด๊ณ  ๊ธฐ์–ตํ•˜๋ ค๊ณ  ์ ์Šต๋‹ˆ๋‹ค... Depth Map ์ถ”์ถœํ•˜๋Š” ๋ฐฉ๋ฒ•Output Properties ์—์„œ ๋‹ค์Œ๊ณผ ๊ฐ™์ด ๋˜‘๊ฐ™์ด ๋”ฐ๋ผ ํ•˜์„ธ์š”... View Layer Properties ์—์„œ Mist ์ฒดํฌํ•ด์ฃผ๊ธฐ World Properties ์—์„œ Mist Pass ๋ถ€๋ถ„์—์„œ Start ๋ž‘ Depth ์•Œ๋งž๊ฒŒ ์ž˜ ๊ฑฐ๋ฆฌ ์กฐ์ ˆ ํ•ด์ฃผ๊ธฐ๊ทธ ์นด๋ฉ”๋ผ๋กœ ๋ถ€ํ„ฐ ๋‚˜์˜ค๋Š” ์„ ์ด ๋ฌผ์ฒด๋ฅผ ๊ด€ํ†ตํ•  ์ˆ˜ ์žˆ์„ ์ •๋„๋กœ ๊ฑฐ๋ฆฌ๋ฅผ ์กฐ์ ˆํ•˜๋ฉด ๋ ๋“ฏ ๊ทธ๋ฆฌ๊ณ  ์˜ค๋ฅธ์ชฝ ์œ„์—์„œ Viewport Shading ์ค‘ Render Pass ๋ฅผ Mist ๋กœ ์„ค์ •ํ•˜์Šˆ Compositing ์ฐฝ์—์„œ ์˜ค๋ฅธ์ชฝ ๋งˆ์šฐ์Šค๋ฅผ ํด๋ฆญํ•ด์„œ +Add → Utilies → Normalize ํด๋ฆญํ•ด์„œ ๋…ธ๋“œ ์ถ”๊ฐ€ํ•˜๋ฉด ๋˜๊ณ ๊ทธ๋ฆผ๊ณผ ๊ฐ™์ด Mist → .. 2025. 4. 14.
[Notable] Inference time vs Rendering time 1. Inference Time (์ถ”๋ก  ์‹œ๊ฐ„)"๋ชจ๋ธ์ด ์ž…๋ ฅ์„ ๋ฐ›์•„ ๊ฒฐ๊ณผ(์ถœ๋ ฅ)๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„"์˜ˆ: ์ด๋ฏธ์ง€ ํ•œ ์žฅ์„ ๋„ฃ์—ˆ์„ ๋•Œ, ๋ชจ๋ธ์ด 3D ์•„๋ฐ”ํƒ€๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„.๋ณดํ†ต ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ๋‚ด๋ถ€ ์—ฐ์‚ฐ (forward pass)์— ํ•ด๋‹นํ•ด.์˜ˆ๋ฅผ ๋“ค์–ด, LHM ๋ชจ๋ธ์ด ๋‹จ์ผ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ 3D Gaussian ์•„๋ฐ”ํƒ€๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์ด inference time๐Ÿ•’ ์‹œ๊ฐ„ ๋ฒ”์œ„: ์ˆ˜ ์ดˆ ~ ์ˆ˜ ๋ถ„๐Ÿ“ ํฌํ•จ ๋‚ด์šฉ:์ด๋ฏธ์ง€ ์ž…๋ ฅ → 3D representation ์˜ˆ์ธก๋„คํŠธ์›Œํฌ ์—ฐ์‚ฐ ๋ฐ post-processing 2. Rendering Time (๋ Œ๋”๋ง ์‹œ๊ฐ„)"์˜ˆ์ธก๋œ 3D ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„(๋ Œ๋”๋ง)ํ•˜๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„"์˜ˆ: ์ƒ์„ฑ๋œ 3D Gaussian ์•„๋ฐ”ํƒ€๋ฅผ ํ™”๋ฉด์— ํฌํ† ๋ฆฌ์–ผ๋ฆฌ์Šคํ‹ฑํ•˜๊ฒŒ.. 2025. 3. 31.
[Notable] NeuS (Neural Implicit Surface) https://lingjie0206.github.io/papers/NeuS/ NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view ReconstructionAbstract We present a novel neural surface reconstruction method, called NeuS (pronunciation: /nuหz/, same as "news"), for reconstructing objects and scenes with high fidelity from 2D image inputs. Existing neural surface reconstruction approaches, such alingjie0206.. 2025. 3. 18.
[Paper Review] SyncDreamer: Generating Multiview-Consistent Images From a Single-View Image https://arxiv.org/abs/2309.03453 SyncDreamer: Generating Multiview-consistent Images from a Single-view ImageIn this paper, we present a novel diffusion model called that generates multiview-consistent images from a single-view image. Using pretrained large-scale 2D diffusion models, recent work Zero123 demonstrates the ability to generate plausible novel views farxiv.org   Abstract์ด ๋…ผ๋ฌธ์—์„œ๋Š” SyncD.. 2025. 3. 18.
[Paper Review] Wonder3D: Single Image to 3D Using Cross-Domain Diffusion https://arxiv.org/abs/2310.15008 Wonder3D: Single Image to 3D using Cross-Domain DiffusionIn this work, we introduce Wonder3D, a novel method for efficiently generating high-fidelity textured meshes from single-view images.Recent methods based on Score Distillation Sampling (SDS) have shown the potential to recover 3D geometry from 2D diffusionarxiv.org ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์‹œํ•˜๋Š” Wonder3D ๋Š” ๋‹ค์ค‘ ์‹œ์  ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•˜๋Š” ๋ฒ•์„  .. 2025. 3. 13.