๐AI41 [Blender4.4][Window] ๋ธ๋ ๋ ์นด๋ฉ๋ผ ์ค์นํด์ ์ ๋๋ฉ์ด์ ๋ ๋๋ง ํ๊ธฐ (RGB Video) ์ผ๋จ ์ ๋ Mixamo ๋ฐ์ดํฐ๋ฅผ ์จ์ ์บ๋ฆญํฐ ์ ๋๋ฉ์ด์ ์ ๋ ๋๋งํด์ video ๋ก ์ถ๋ ฅํด๋ณด๋๋ก ํ๊ฒ ์ต๋๋ค.์ผ๋จ Mixamo ์์ ์ํ๋ ์ ๋๋ฉ์ด์ fbx ํ์ผ์ ๋ค์ด๋ฐ๊ณ ๋ธ๋ ๋์ import ํด์ค๋๋ค. ๊ทธ๋ผ ์ด์ ๋ค์๊ณผ ๊ฐ์ด ๊ฐ์ฒด๊ฐ ๋์ฌ๊ฒ...์นด๋ฉ๋ผ๋ Shift + A ๋๋ฌ์ Camera ํด๋ฆญํ๋ฉด ์์ฑํ ์ ์์๊ทธ๋ฆฌ๊ณ ์นด๋ฉ๋ผ๋ ๊ฐ์ฒด๋ค ํด๋ฆญ์ ํ๊ณ N ์ ๋๋ฅด๋ฉด ์ค๋ฅธ์ชฝ ์์ location ์ด๋ Rotation ๋์ค๊ฑฐ๋ ์?๊ทธ๊ฑฐ ์ซ์๋ค ์กฐ์ ํด์ ๊ฐ์ฒด ์์น๋ ์นด๋ฉ๋ผ ๋ทฐ ์์น๋ ์กฐ์ ํ๋ฉด ๋ฉ๋๋ค.์๋๋ฉด layout ์ฐฝ์์ ์์ง์ด๊ณ ์ถ์ ๋ฌผ์ฒด ์ ํํด์ G + x/y/z ์ ์ค ์ด๋๋ก ์์ง์ด๊ณ ์ถ์์ง ํด๋ฆญํด์ ํด๋น ์ถ์ผ๋ก๋ง ์์ง์ผ ์ ๋ ์์ (ex. x ์ถ ๋ฐฉํฅ์ผ๋ก ๊ฐ์ฒด๋ฅผ ์์ง์ด๊ณ ์ถ์ผ๋ฉด G + x ํ๊ณ ๋ง์ฐ์ค๋ก ์.. 2025. 4. 14. [Blender4.4][Window] Depth Map ์ถ์ถํ๊ธฐ ํ ์ง์ง ๋ธ๋ ๋ ๋๋ฌด ์ด๋ ต๊ณ ๋ณต์กํ๊ณ ์ ์ ๋๊ฐ๊ณ ๋ฑ๋ฑ์ ๊ฐ ๋ณด๊ณ ๊ธฐ์ตํ๋ ค๊ณ ์ ์ต๋๋ค... Depth Map ์ถ์ถํ๋ ๋ฐฉ๋ฒOutput Properties ์์ ๋ค์๊ณผ ๊ฐ์ด ๋๊ฐ์ด ๋ฐ๋ผ ํ์ธ์... View Layer Properties ์์ Mist ์ฒดํฌํด์ฃผ๊ธฐ World Properties ์์ Mist Pass ๋ถ๋ถ์์ Start ๋ Depth ์๋ง๊ฒ ์ ๊ฑฐ๋ฆฌ ์กฐ์ ํด์ฃผ๊ธฐ๊ทธ ์นด๋ฉ๋ผ๋ก ๋ถํฐ ๋์ค๋ ์ ์ด ๋ฌผ์ฒด๋ฅผ ๊ดํตํ ์ ์์ ์ ๋๋ก ๊ฑฐ๋ฆฌ๋ฅผ ์กฐ์ ํ๋ฉด ๋ ๋ฏ ๊ทธ๋ฆฌ๊ณ ์ค๋ฅธ์ชฝ ์์์ Viewport Shading ์ค Render Pass ๋ฅผ Mist ๋ก ์ค์ ํ์ Compositing ์ฐฝ์์ ์ค๋ฅธ์ชฝ ๋ง์ฐ์ค๋ฅผ ํด๋ฆญํด์ +Add → Utilies → Normalize ํด๋ฆญํด์ ๋ ธ๋ ์ถ๊ฐํ๋ฉด ๋๊ณ ๊ทธ๋ฆผ๊ณผ ๊ฐ์ด Mist → .. 2025. 4. 14. [Notable] Inference time vs Rendering time 1. Inference Time (์ถ๋ก ์๊ฐ)"๋ชจ๋ธ์ด ์ ๋ ฅ์ ๋ฐ์ ๊ฒฐ๊ณผ(์ถ๋ ฅ)๋ฅผ ์์ฑํ๋ ๋ฐ ๊ฑธ๋ฆฌ๋ ์๊ฐ"์: ์ด๋ฏธ์ง ํ ์ฅ์ ๋ฃ์์ ๋, ๋ชจ๋ธ์ด 3D ์๋ฐํ๋ฅผ ์์ฑํ๋ ๋ฐ ๊ฑธ๋ฆฌ๋ ์๊ฐ.๋ณดํต ๋ฅ๋ฌ๋ ๋คํธ์ํฌ ๋ด๋ถ ์ฐ์ฐ (forward pass)์ ํด๋นํด.์๋ฅผ ๋ค์ด, LHM ๋ชจ๋ธ์ด ๋จ์ผ ์ด๋ฏธ์ง๋ก๋ถํฐ 3D Gaussian ์๋ฐํ๋ฅผ ๋ง๋ค์ด๋ด๋ ๋ฐ ๊ฑธ๋ฆฌ๋ ์๊ฐ์ด inference time๐ ์๊ฐ ๋ฒ์: ์ ์ด ~ ์ ๋ถ๐ ํฌํจ ๋ด์ฉ:์ด๋ฏธ์ง ์ ๋ ฅ → 3D representation ์์ธก๋คํธ์ํฌ ์ฐ์ฐ ๋ฐ post-processing 2. Rendering Time (๋ ๋๋ง ์๊ฐ)"์์ธก๋ 3D ๋ฐ์ดํฐ๋ฅผ ์๊ฐ์ ์ผ๋ก ํํ(๋ ๋๋ง)ํ๋ ๋ฐ ๊ฑธ๋ฆฌ๋ ์๊ฐ"์: ์์ฑ๋ 3D Gaussian ์๋ฐํ๋ฅผ ํ๋ฉด์ ํฌํ ๋ฆฌ์ผ๋ฆฌ์คํฑํ๊ฒ.. 2025. 3. 31. [Notable] NeuS (Neural Implicit Surface) https://lingjie0206.github.io/papers/NeuS/ NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view ReconstructionAbstract We present a novel neural surface reconstruction method, called NeuS (pronunciation: /nuหz/, same as "news"), for reconstructing objects and scenes with high fidelity from 2D image inputs. Existing neural surface reconstruction approaches, such alingjie0206.. 2025. 3. 18. [Paper Review] SyncDreamer: Generating Multiview-Consistent Images From a Single-View Image https://arxiv.org/abs/2309.03453 SyncDreamer: Generating Multiview-consistent Images from a Single-view ImageIn this paper, we present a novel diffusion model called that generates multiview-consistent images from a single-view image. Using pretrained large-scale 2D diffusion models, recent work Zero123 demonstrates the ability to generate plausible novel views farxiv.org Abstract์ด ๋ ผ๋ฌธ์์๋ SyncD.. 2025. 3. 18. [Paper Review] Wonder3D: Single Image to 3D Using Cross-Domain Diffusion https://arxiv.org/abs/2310.15008 Wonder3D: Single Image to 3D using Cross-Domain DiffusionIn this work, we introduce Wonder3D, a novel method for efficiently generating high-fidelity textured meshes from single-view images.Recent methods based on Score Distillation Sampling (SDS) have shown the potential to recover 3D geometry from 2D diffusionarxiv.org ์ด ๋ ผ๋ฌธ์์ ์ ์ํ๋ Wonder3D ๋ ๋ค์ค ์์ ์ผ๊ด์ฑ์ ์ ์งํ๋ ๋ฒ์ .. 2025. 3. 13. ์ด์ 1 2 3 4 ยทยทยท 7 ๋ค์