๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

๐Ÿ˜ŽAI/Terminology9

[Notable] Inference time vs Rendering time 1. Inference Time (์ถ”๋ก  ์‹œ๊ฐ„)"๋ชจ๋ธ์ด ์ž…๋ ฅ์„ ๋ฐ›์•„ ๊ฒฐ๊ณผ(์ถœ๋ ฅ)๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„"์˜ˆ: ์ด๋ฏธ์ง€ ํ•œ ์žฅ์„ ๋„ฃ์—ˆ์„ ๋•Œ, ๋ชจ๋ธ์ด 3D ์•„๋ฐ”ํƒ€๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„.๋ณดํ†ต ๋”ฅ๋Ÿฌ๋‹ ๋„คํŠธ์›Œํฌ ๋‚ด๋ถ€ ์—ฐ์‚ฐ (forward pass)์— ํ•ด๋‹นํ•ด.์˜ˆ๋ฅผ ๋“ค์–ด, LHM ๋ชจ๋ธ์ด ๋‹จ์ผ ์ด๋ฏธ์ง€๋กœ๋ถ€ํ„ฐ 3D Gaussian ์•„๋ฐ”ํƒ€๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„์ด inference time๐Ÿ•’ ์‹œ๊ฐ„ ๋ฒ”์œ„: ์ˆ˜ ์ดˆ ~ ์ˆ˜ ๋ถ„๐Ÿ“ ํฌํ•จ ๋‚ด์šฉ:์ด๋ฏธ์ง€ ์ž…๋ ฅ โ†’ 3D representation ์˜ˆ์ธก๋„คํŠธ์›Œํฌ ์—ฐ์‚ฐ ๋ฐ post-processing 2. Rendering Time (๋ Œ๋”๋ง ์‹œ๊ฐ„)"์˜ˆ์ธก๋œ 3D ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐ์ ์œผ๋กœ ํ‘œํ˜„(๋ Œ๋”๋ง)ํ•˜๋Š” ๋ฐ ๊ฑธ๋ฆฌ๋Š” ์‹œ๊ฐ„"์˜ˆ: ์ƒ์„ฑ๋œ 3D Gaussian ์•„๋ฐ”ํƒ€๋ฅผ ํ™”๋ฉด์— ํฌํ† ๋ฆฌ์–ผ๋ฆฌ์Šคํ‹ฑํ•˜๊ฒŒ.. 2025. 3. 31.
[Notable] NeuS (Neural Implicit Surface) https://lingjie0206.github.io/papers/NeuS/ NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view ReconstructionAbstract We present a novel neural surface reconstruction method, called NeuS (pronunciation: /nuหz/, same as "news"), for reconstructing objects and scenes with high fidelity from 2D image inputs. Existing neural surface reconstruction approaches, such alingjie0206.. 2025. 3. 18.
[Notable] ๋‹ค์ค‘๊ณต์„ ์„ฑ(Multicollinearity) ๋‹ค์ค‘๊ณต์„ ์„ฑ(Multicollinearity) ์ด๋ž€?: ํšŒ๊ท€ ๋ถ„์„์—์„œ ๋…๋ฆฝ ๋ณ€์ˆ˜๋“ค ๊ฐ„์— ๊ฐ•ํ•œ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ์กด์žฌํ•˜๋Š” ๊ฒฝ์šฐ๋ฅผ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค. ๋‹ค์ค‘๊ณต์„ ์„ฑ์ด ์‹ฌํ•˜๋ฉด ํšŒ๊ท€ ๊ณ„์ˆ˜์˜ ์‹ ๋ขฐ์„ฑ์ด ๋‚ฎ์•„์ง€๊ณ , ์˜ˆ์ธก ๋ชจ๋ธ์˜ ํ•ด์„์ด ์–ด๋ ค์›Œ์ง„๋‹ค. ๋‹ค์ค‘๊ณต์„ ์„ฑ์ด ๋ฌธ์ œ๋ฅผ ์ผ์œผํ‚ค๋Š” ์ด์œ ํšŒ๊ท€ ๊ณ„์ˆ˜์˜ ๋ถˆ์•ˆ์ •์„ฑ๋…๋ฆฝ ๋ณ€์ˆ˜๋“ค์ด ๊ฐ•ํ•œ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ€์ง€๋ฉด, ํ•˜๋‚˜์˜ ๋ณ€์ˆ˜๋ฅผ ์กฐ๊ธˆ๋งŒ ๋ณ€๊ฒฝํ•ด๋„ ํšŒ๊ท€ ๊ณ„์ˆ˜๊ฐ€ ํฌ๊ฒŒ ๋ณ€ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.ํ•ด์„์˜ ์–ด๋ ค์›€์–ด๋–ค ๋…๋ฆฝ ๋ณ€์ˆ˜๊ฐ€ ์ข…์† ๋ณ€์ˆ˜์— ์‹ค์ œ๋กœ ์˜ํ–ฅ์„ ๋ฏธ์น˜๋Š”์ง€ ํŒŒ์•…ํ•˜๊ธฐ ์–ด๋ ค์›Œ์ง‘๋‹ˆ๋‹ค.ํ†ต๊ณ„์  ์œ ์˜์„ฑ ๋ฌธ์ œํšŒ๊ท€ ๊ณ„์ˆ˜์˜ p-value ๊ฐ€ ๋†’์•„์ ธ ์œ ์˜ํ•˜์ง€ ์•Š๊ฒŒ ๋‚˜ํƒ€๋‚  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๋‹ค์ค‘๊ณต์„ ์„ฑ ์˜ˆ์‹œ1. ์‹ค์ƒํ™œ ์˜ˆ์‹œ: ๋ถ€๋™์‚ฐ ๊ฐ€๊ฒฉ ์˜ˆ์ธก์•„ํŒŒํŠธ ๊ฐ€๊ฒฉ์„ ์˜ˆ์ธกํ•˜๋Š” ํšŒ๊ท€ ๋ชจ๋ธ์„ ๋งŒ๋“ ๋‹ค๊ณ  ๊ฐ€์ •ํ•ด ๋ด…์‹œ๋‹ค. ๋…๋ฆฝ ๋ณ€์ˆ˜๋กœ ๋‹ค์Œ์„ ํฌํ•จํ•œ๋‹ค๊ณ  ๊ฐ€์ •ํ•ฉ๋‹ˆ๋‹ค.์ „์šฉ๋ฉด์  .. 2025. 3. 4.
[Notable] Low Temperature Samples Low Temperature Samples๋Š” ์ƒ์„ฑ ๋ชจ๋ธ์—์„œ ์ƒ˜ํ”Œ ํ’ˆ์งˆ์„ ๋†’์ด๊ณ  ๋‹ค์–‘์„ฑ์„ ์ค„์ด๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.์ฃผ๋กœ ํ™•๋ฅ  ๋ถ„ํฌ์˜ "์ƒ˜ํ”Œ๋ง ์˜จ๋„(temperature)"๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ์ƒ์„ฑ ๊ฒฐ๊ณผ์— ์˜ํ–ฅ์„ ์ค๋‹ˆ๋‹ค. 1. "Temperature"์˜ ์˜๋ฏธTemperature๋Š” ํ™•๋ฅ  ๋ถ„ํฌ์˜ "๋‚ ์นด๋กœ์›€(sharpness)" ๋˜๋Š” "๋ถˆํ™•์‹ค์„ฑ(uncertainty)"์„ ์กฐ์ ˆํ•˜๋Š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์ž…๋‹ˆ๋‹ค.์ˆ˜ํ•™์ ์œผ๋กœ๋Š” ์†Œํ”„ํŠธ๋งฅ์Šค(softmax) ํ•จ์ˆ˜์—์„œ ์ž์ฃผ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค:์—ฌ๊ธฐ์„œ:T = temperature (์˜จ๋„)zi = ๋กœ์ง“(logit) ๊ฐ’ (๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ์ ์ˆ˜)P(xi) = ์ตœ์ข… ํ™•๋ฅ  2. Temperature์˜ ์˜ํ–ฅ๋†’์€ ์˜จ๋„ (Tโ‰ซ1)ํ™•๋ฅ  ๋ถ„ํฌ๊ฐ€ **ํ‰ํ‰(flat)**ํ•ด์ง€๊ณ , ๋” ๋‹ค์–‘ํ•œ ์ƒ˜ํ”Œ์ด ์ƒ์„ฑ๋จ๋ชจ๋ธ์ด ๋ถˆํ™•์‹คํ•œ ์„ ํƒ์„ ๋” ๋งŽ์ด .. 2025. 2. 5.
[Notable] Evaluation Metrics ํ•ด๋‹น ๊ธ€์€ chatGPT ๋กœ ์ž‘์„ฑ๋œ ๊ธ€ ์ž…๋‹ˆ๋‹ค. 2025. 2. 4.
[Notable] GANs ์˜ ์ฃผ์š” ๋ฌธ์ œ์ : Mode Collapse ์™€ Training Instability โœ… 1. Mode Collapse (๋ชจ๋“œ ๋ถ•๊ดด)๐Ÿšฉ Mode Collapse๋ž€?Mode Collapse๋Š” GAN์˜ ์ƒ์„ฑ์ž(Generator)๊ฐ€ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘ํ•œ ํŒจํ„ด์„ ํ•™์Šตํ•˜์ง€ ๋ชปํ•˜๊ณ , ์ œํ•œ๋œ ํŒจํ„ด๋งŒ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ํ˜„์ƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.์˜ˆ์‹œ:๊ณ ์–‘์ด ์‚ฌ์ง„ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•™์Šต์‹œ์ผฐ๋‹ค๋ฉด ๋‹ค์–‘ํ•œ ๊ณ ์–‘์ด ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋Ÿฌ๋‚˜ Mode Collapse๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉด ์ƒ์„ฑ์ž๋Š” "ํ•œ ๊ฐ€์ง€ ๊ณ ์–‘์ด ์œ ํ˜•"๋งŒ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ƒ์„ฑํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.๐Ÿ” ์™œ ๋ฐœ์ƒํ• ๊นŒ?GAN์€ ์ƒ์„ฑ์ž(Generator)์™€ ํŒ๋ณ„์ž(Discriminator)๊ฐ€ ๊ฒฝ์Ÿํ•˜๋Š” ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ:์ƒ์„ฑ์ž๊ฐ€ ์šฐ์—ฐํžˆ ํŒ๋ณ„์ž๋ฅผ ์ž˜ ์†์ด๋Š” ํŠน์ • ํŒจํ„ด์„ ๋ฐœ๊ฒฌํ•ฉ๋‹ˆ๋‹ค.์ด ํŒจํ„ด์„ ๋ฐ˜๋ณตํ•ด์„œ ์‚ฌ์šฉํ•˜๋ฉด ํŒ๋ณ„์ž๋ฅผ ์†์ผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.๊ฒฐ๊ตญ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์„ฑ์ด ์‚ฌ๋ผ์ง€๊ณ  ํŠน์ • ๋ชจ.. 2025. 2. 4.