๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

๐Ÿ˜ŽAI41

[Paper Review] Classifier-Free Diffusion Guidance https://arxiv.org/abs/2207.12598 Classifier-Free Diffusion GuidanceClassifier guidance is a recently introduced method to trade off mode coverage and sample fidelity in conditional diffusion models post training, in the same spirit as low temperature sampling or truncation in other types of generative models. Classifier garxiv.org  Introduce ์ด ๋…ผ๋ฌธ์€ classifier guidance ๋…ผ๋ฌธ์—์„œ classifier ์„ ์‚ฌ์šฉํ•˜์ง€ ์•Š๊ณ ๋„ c.. 2025. 2. 5.
[Notable] Low Temperature Samples Low Temperature Samples๋Š” ์ƒ์„ฑ ๋ชจ๋ธ์—์„œ ์ƒ˜ํ”Œ ํ’ˆ์งˆ์„ ๋†’์ด๊ณ  ๋‹ค์–‘์„ฑ์„ ์ค„์ด๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.์ฃผ๋กœ ํ™•๋ฅ  ๋ถ„ํฌ์˜ "์ƒ˜ํ”Œ๋ง ์˜จ๋„(temperature)"๋ฅผ ์กฐ์ ˆํ•˜์—ฌ ์ƒ์„ฑ ๊ฒฐ๊ณผ์— ์˜ํ–ฅ์„ ์ค๋‹ˆ๋‹ค. 1. "Temperature"์˜ ์˜๋ฏธTemperature๋Š” ํ™•๋ฅ  ๋ถ„ํฌ์˜ "๋‚ ์นด๋กœ์›€(sharpness)" ๋˜๋Š” "๋ถˆํ™•์‹ค์„ฑ(uncertainty)"์„ ์กฐ์ ˆํ•˜๋Š” ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ์ž…๋‹ˆ๋‹ค.์ˆ˜ํ•™์ ์œผ๋กœ๋Š” ์†Œํ”„ํŠธ๋งฅ์Šค(softmax) ํ•จ์ˆ˜์—์„œ ์ž์ฃผ ์‚ฌ์šฉ๋ฉ๋‹ˆ๋‹ค:์—ฌ๊ธฐ์„œ:T = temperature (์˜จ๋„)zi = ๋กœ์ง“(logit) ๊ฐ’ (๋ชจ๋ธ์ด ์˜ˆ์ธกํ•œ ์ ์ˆ˜)P(xi) = ์ตœ์ข… ํ™•๋ฅ  2. Temperature์˜ ์˜ํ–ฅ๋†’์€ ์˜จ๋„ (Tโ‰ซ1)ํ™•๋ฅ  ๋ถ„ํฌ๊ฐ€ **ํ‰ํ‰(flat)**ํ•ด์ง€๊ณ , ๋” ๋‹ค์–‘ํ•œ ์ƒ˜ํ”Œ์ด ์ƒ์„ฑ๋จ๋ชจ๋ธ์ด ๋ถˆํ™•์‹คํ•œ ์„ ํƒ์„ ๋” ๋งŽ์ด .. 2025. 2. 5.
[Notable] Evaluation Metrics ํ•ด๋‹น ๊ธ€์€ chatGPT ๋กœ ์ž‘์„ฑ๋œ ๊ธ€ ์ž…๋‹ˆ๋‹ค. 2025. 2. 4.
[Paper Review] High-Resolution Image Synthesis with Latent Diffusion Models (Aka. Stable Diffusion) https://arxiv.org/abs/2112.10752 High-Resolution Image Synthesis with Latent Diffusion ModelsBy decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism tarxiv.org ์ด๋ฒˆ ์ฃผ์ œ๋Š” ์•„์ฃผ ์œ ๋ช…ํ•œ Stable Diffuion ๋…ผ๋ฌธ์„ ๋ฆฌ๋ทฐํ•ด๋ณด๋„.. 2025. 2. 4.
[Notable] GANs ์˜ ์ฃผ์š” ๋ฌธ์ œ์ : Mode Collapse ์™€ Training Instability โœ… 1. Mode Collapse (๋ชจ๋“œ ๋ถ•๊ดด)๐Ÿšฉ Mode Collapse๋ž€?Mode Collapse๋Š” GAN์˜ ์ƒ์„ฑ์ž(Generator)๊ฐ€ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘ํ•œ ํŒจํ„ด์„ ํ•™์Šตํ•˜์ง€ ๋ชปํ•˜๊ณ , ์ œํ•œ๋œ ํŒจํ„ด๋งŒ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ํ˜„์ƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.์˜ˆ์‹œ:๊ณ ์–‘์ด ์‚ฌ์ง„ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•™์Šต์‹œ์ผฐ๋‹ค๋ฉด ๋‹ค์–‘ํ•œ ๊ณ ์–‘์ด ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋Ÿฌ๋‚˜ Mode Collapse๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉด ์ƒ์„ฑ์ž๋Š” "ํ•œ ๊ฐ€์ง€ ๊ณ ์–‘์ด ์œ ํ˜•"๋งŒ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ƒ์„ฑํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.๐Ÿ” ์™œ ๋ฐœ์ƒํ• ๊นŒ?GAN์€ ์ƒ์„ฑ์ž(Generator)์™€ ํŒ๋ณ„์ž(Discriminator)๊ฐ€ ๊ฒฝ์Ÿํ•˜๋Š” ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ:์ƒ์„ฑ์ž๊ฐ€ ์šฐ์—ฐํžˆ ํŒ๋ณ„์ž๋ฅผ ์ž˜ ์†์ด๋Š” ํŠน์ • ํŒจํ„ด์„ ๋ฐœ๊ฒฌํ•ฉ๋‹ˆ๋‹ค.์ด ํŒจํ„ด์„ ๋ฐ˜๋ณตํ•ด์„œ ์‚ฌ์šฉํ•˜๋ฉด ํŒ๋ณ„์ž๋ฅผ ์†์ผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.๊ฒฐ๊ตญ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์„ฑ์ด ์‚ฌ๋ผ์ง€๊ณ  ํŠน์ • ๋ชจ.. 2025. 2. 4.
[Notable] Explicit Representation VS Implicit Representation 1. Explicit Representation (๋ช…์‹œ์  ํ‘œํ˜„)๐Ÿ” ์ •์˜:Explicit Representation์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘์ ์ด๊ณ  ๊ตฌ์ฒด์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.๋ชจ๋ธ์ด ๋‹ค๋ฃจ๋Š” ๊ตฌ์กฐ, ํŠน์„ฑ, ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ๋“ฑ์ด ๋ช…ํ™•ํ•œ ํ˜•ํƒœ๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค.๐Ÿ“Š ์˜ˆ์‹œ:์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ: ํ”ฝ์…€ ๊ฐ’์œผ๋กœ ์ด๋ฃจ์–ด์ง„ RGB ์ด๋ฏธ์ง€ ๊ฐ ํ”ฝ์…€์˜ ์ƒ‰์ƒ, ์œ„์น˜๊ฐ€ ์ •ํ™•ํ•˜๊ฒŒ ์ €์žฅ๋จ3D ๋ชจ๋ธ๋ง: ๋ฉ”์‰ฌ(Mesh) ๊ธฐ๋ฐ˜ ๋ชจ๋ธ: ์ (vertex)๊ณผ ๋ฉด(face)์˜ ์ขŒํ‘œ๊ฐ€ ๋ช…ํ™•ํ•˜๊ฒŒ ๊ธฐ๋ก๋จํ†ต๊ณ„ ๋ชจ๋ธ: ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ: ํ‰๊ท (ฮผ)๊ณผ ๋ถ„์‚ฐ(ฯƒยฒ)์ด ๋ช…ํ™•ํ•˜๊ฒŒ ์ •์˜๋จโœ… ์žฅ์ : ์ง๊ด€์ ์ด๊ณ  ํ•ด์„์ด ์‰ฌ์›€ ๋ฐ์ดํ„ฐ๋‚˜ ๊ตฌ์กฐ์˜ ๋ณ€๊ฒฝ์ด ์šฉ์ด ๋ช…ํ™•ํ•œ ์ˆ˜์‹ ๋˜๋Š” ๊ทœ์น™์— ๊ธฐ๋ฐ˜โŒ ๋‹จ์ : ๋ณต์žกํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œํ˜„ํ• ์ˆ˜๋ก ๋น„์šฉ์ด ํผ (๋ฉ”๋ชจ๋ฆฌ, ๊ณ„์‚ฐ๋Ÿ‰ ์ฆ๊ฐ€) ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์—์„œ๋Š” ๋น„ํšจ์œจ์ ์ผ ์ˆ˜ .. 2025. 1. 31.