๋ณธ๋ฌธ ๋ฐ”๋กœ๊ฐ€๊ธฐ

์ „์ฒด ๊ธ€143

[Notable] Evaluation Metrics ํ•ด๋‹น ๊ธ€์€ chatGPT ๋กœ ์ž‘์„ฑ๋œ ๊ธ€ ์ž…๋‹ˆ๋‹ค. 2025. 2. 4.
[Paper Review] High-Resolution Image Synthesis with Latent Diffusion Models (Aka. Stable Diffusion) https://arxiv.org/abs/2112.10752 High-Resolution Image Synthesis with Latent Diffusion ModelsBy decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism tarxiv.org ์ด๋ฒˆ ์ฃผ์ œ๋Š” ์•„์ฃผ ์œ ๋ช…ํ•œ Stable Diffuion ๋…ผ๋ฌธ์„ ๋ฆฌ๋ทฐํ•ด๋ณด๋„.. 2025. 2. 4.
[Notable] GANs ์˜ ์ฃผ์š” ๋ฌธ์ œ์ : Mode Collapse ์™€ Training Instability โœ… 1. Mode Collapse (๋ชจ๋“œ ๋ถ•๊ดด)๐Ÿšฉ Mode Collapse๋ž€?Mode Collapse๋Š” GAN์˜ ์ƒ์„ฑ์ž(Generator)๊ฐ€ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘ํ•œ ํŒจํ„ด์„ ํ•™์Šตํ•˜์ง€ ๋ชปํ•˜๊ณ , ์ œํ•œ๋œ ํŒจํ„ด๋งŒ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ƒ์„ฑํ•˜๋Š” ํ˜„์ƒ์„ ์˜๋ฏธํ•ฉ๋‹ˆ๋‹ค.์˜ˆ์‹œ:๊ณ ์–‘์ด ์‚ฌ์ง„ ๋ฐ์ดํ„ฐ์…‹์œผ๋กœ ํ•™์Šต์‹œ์ผฐ๋‹ค๋ฉด ๋‹ค์–‘ํ•œ ๊ณ ์–‘์ด ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋Ÿฌ๋‚˜ Mode Collapse๊ฐ€ ๋ฐœ์ƒํ•˜๋ฉด ์ƒ์„ฑ์ž๋Š” "ํ•œ ๊ฐ€์ง€ ๊ณ ์–‘์ด ์œ ํ˜•"๋งŒ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ƒ์„ฑํ•˜๊ฒŒ ๋ฉ๋‹ˆ๋‹ค.๐Ÿ” ์™œ ๋ฐœ์ƒํ• ๊นŒ?GAN์€ ์ƒ์„ฑ์ž(Generator)์™€ ํŒ๋ณ„์ž(Discriminator)๊ฐ€ ๊ฒฝ์Ÿํ•˜๋Š” ๊ตฌ์กฐ์ž…๋‹ˆ๋‹ค. ์ด ๊ณผ์ •์—์„œ:์ƒ์„ฑ์ž๊ฐ€ ์šฐ์—ฐํžˆ ํŒ๋ณ„์ž๋ฅผ ์ž˜ ์†์ด๋Š” ํŠน์ • ํŒจํ„ด์„ ๋ฐœ๊ฒฌํ•ฉ๋‹ˆ๋‹ค.์ด ํŒจํ„ด์„ ๋ฐ˜๋ณตํ•ด์„œ ์‚ฌ์šฉํ•˜๋ฉด ํŒ๋ณ„์ž๋ฅผ ์†์ผ ์ˆ˜ ์žˆ๋‹ค๊ณ  ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.๊ฒฐ๊ตญ ๋ฐ์ดํ„ฐ์˜ ๋‹ค์–‘์„ฑ์ด ์‚ฌ๋ผ์ง€๊ณ  ํŠน์ • ๋ชจ.. 2025. 2. 4.
[Notable] Explicit Representation VS Implicit Representation 1. Explicit Representation (๋ช…์‹œ์  ํ‘œํ˜„)๐Ÿ” ์ •์˜:Explicit Representation์€ ๋ฐ์ดํ„ฐ๋ฅผ ์ง์ ‘์ ์ด๊ณ  ๊ตฌ์ฒด์ ์œผ๋กœ ํ‘œํ˜„ํ•˜๋Š” ๋ฐฉ์‹์ž…๋‹ˆ๋‹ค.๋ชจ๋ธ์ด ๋‹ค๋ฃจ๋Š” ๊ตฌ์กฐ, ํŠน์„ฑ, ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ ๋“ฑ์ด ๋ช…ํ™•ํ•œ ํ˜•ํƒœ๋กœ ์ •์˜๋ฉ๋‹ˆ๋‹ค.๐Ÿ“Š ์˜ˆ์‹œ:์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ: ํ”ฝ์…€ ๊ฐ’์œผ๋กœ ์ด๋ฃจ์–ด์ง„ RGB ์ด๋ฏธ์ง€ ๊ฐ ํ”ฝ์…€์˜ ์ƒ‰์ƒ, ์œ„์น˜๊ฐ€ ์ •ํ™•ํ•˜๊ฒŒ ์ €์žฅ๋จ3D ๋ชจ๋ธ๋ง: ๋ฉ”์‰ฌ(Mesh) ๊ธฐ๋ฐ˜ ๋ชจ๋ธ: ์ (vertex)๊ณผ ๋ฉด(face)์˜ ์ขŒํ‘œ๊ฐ€ ๋ช…ํ™•ํ•˜๊ฒŒ ๊ธฐ๋ก๋จํ†ต๊ณ„ ๋ชจ๋ธ: ๊ฐ€์šฐ์‹œ์•ˆ ๋ถ„ํฌ: ํ‰๊ท (ฮผ)๊ณผ ๋ถ„์‚ฐ(ฯƒยฒ)์ด ๋ช…ํ™•ํ•˜๊ฒŒ ์ •์˜๋จโœ… ์žฅ์ : ์ง๊ด€์ ์ด๊ณ  ํ•ด์„์ด ์‰ฌ์›€ ๋ฐ์ดํ„ฐ๋‚˜ ๊ตฌ์กฐ์˜ ๋ณ€๊ฒฝ์ด ์šฉ์ด ๋ช…ํ™•ํ•œ ์ˆ˜์‹ ๋˜๋Š” ๊ทœ์น™์— ๊ธฐ๋ฐ˜โŒ ๋‹จ์ : ๋ณต์žกํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ํ‘œํ˜„ํ• ์ˆ˜๋ก ๋น„์šฉ์ด ํผ (๋ฉ”๋ชจ๋ฆฌ, ๊ณ„์‚ฐ๋Ÿ‰ ์ฆ๊ฐ€) ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ์—์„œ๋Š” ๋น„ํšจ์œจ์ ์ผ ์ˆ˜ .. 2025. 1. 31.
[Paper Review][Workflow Review] DreamFusion: Text-to-3D Using 2D Diffusion DreamFusion ์€ Text input์— 3D output์„ ๊ฒฐ๊ณผ๋กœ ํ•˜๋Š” ๋…ผ๋ฌธ์ž…๋‹ˆ๋‹ค.https://dreamfusion3d.github.io/ DreamFusion: Text-to-3D using 2D DiffusionDreamFusion: Text-to-3D using 2D Diffusion, 2022.dreamfusion3d.github.io  ์ •๋ง ๊ฐ„๋‹จํ•˜๊ฒŒ ์ •๋ฆฌ๋ฅผ ํ•˜์ž๋ฉด,NeRF ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋žœ๋คํ•œ 3D ๋ฌผ์ฒด๋ฅผ ๋ Œ๋”ํ•ฉ๋‹ˆ๋‹ค.๊ทธ๋ฆฌ๊ณ  text ๋ฐ์ดํ„ฐ๋ฅผ input์œผ๋กœ ๋„ฃ์œผ๋ฉด Stable Diffusion ์„ ์ด์šฉํ•˜์—ฌ 2D image ๋ฅผ generate ํ•ฉ๋‹ˆ๋‹ค.generated ๋œ ์ด๋ฏธ์ง€์™€ NeRF ์—์„œ ๋ Œ๋”๋œ 3D ์ด๋ฏธ์ง€์˜ 2D, ๊ทธ๋ฆฌ๊ณ  text prompt ๋ฅผ SDS (Score Distillati.. 2025. 1. 23.
[Notable] Differentiable image parameterization, DIP https://distill.pub/2018/differentiable-parameterizations/ Differentiable Image ParameterizationsA powerful, under-explored tool for neural network visualizations and art.distill.pub  Differentiable image parameterization์€ ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋ฐ ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ์ด๋ฏธ์ง€๋ฅผ ํŒŒ๋ผ๋ฏธํ„ฐํ™”(๋งค๊ฐœ๋ณ€์ˆ˜ํ™”)ํ•˜์—ฌ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•œ ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๊ธฐ๋ฒ•์ž…๋‹ˆ๋‹ค.์ด๋ฅผ ํ†ตํ•ด ์ด๋ฏธ์ง€ ์ƒ์„ฑ ๋˜๋Š” ์ˆ˜์ •์˜ ๊ณผ์ •์—์„œ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅ์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.์ฃผ๋กœ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์—์„œ ์ด๋ฏธ์ง€ ์ƒ์„ฑ, ๋ณ€ํ˜•, ๋ณต์› ๋“ฑ์˜ ์ž‘์—…์„ ํ•˜๋ฉด์„œ, ๋ชจ๋ธ์ด ์ด๋ฏธ์ง€์— ๋Œ€ํ•œ ์ •๋ณด๋ฅผ ์—…๋ฐ์ดํŠธํ• .. 2025. 1. 21.